Klasifikasi Berita Menggunakan Metode Naïve Bayes Classifier

نویسندگان

چکیده

Abstrak - Tingginya kecenderugan masyarakat dalam mengakses berita secara online, membuat editor dan portal harus menyediakan yang berkualitas. Namun pada tersebut masih diklasifikasikan umum, sehingga ketika pembaca ingin mendapatkan kategori lebih spesifik dilakukan manual dengan menyaring berita-berita tersebut. Hal ini juga dialami oleh bidang sosial Badan Pusat Statistik Provinsi Riau kesulitan mencari mengklasifikasikan jenis tentang Riau. Oleh sebab itu, proses pengklasifikasian menggunakan metode naïve bayes classifier merupakan hal penting untuk dilakukan. Jumlah digunakan penelitian berjumlah 510 dikategorikan menjadi 3 yaitu demokrasi, kemiskinan, ketenagakerjaan. Agar membantu di sebagai landasan fenomena terjadi daerah berdasarkan dari nilai indeks ketenagakerjaan, kemiskinan Proses meliputi: pengumpulan data, text preprocessing, pembobotan kata, klasifikasi classifier. Nilai akurasi tertinggi diperoleh sebesar 94% pembagian data uji 10% latih 90%.Kata kunci: Berita, Statistik, Klasifikasi, Naïve Bayes Classifier, RiauAbstract The high tendency of people to access news, especially online makes editors and news sites provide quality information news. However, the grouping is still classified in general, so, when reader want get a more specific category it must be done manually by filtering This also happened social sector Riau, which has difficulty finding about Province. Therefore, process classifying using Naive Classifier method an important thing do. number used this research it's categorized into categories, namely democracy, poverty, employment. classification includes: collection, labeling, term weighting, naive classification. highest accuracy value obtained was with distribution test 90% training data.Keywords: Classification, News,

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semantic Naïve Bayes Classifier for Document Classification

In this paper, we propose a semantic naïve Bayes classifier (SNBC) to improve the conventional naïve Bayes classifier (NBC) by incorporating “document-level” semantic information for document classification (DC). To capture the semantic information from each document, we develop semantic feature extraction and modeling algorithms. For semantic feature extraction, we first apply a log-Bilinear d...

متن کامل

Boosting the Tree Augmented Naïve Bayes Classifier

The Tree Augmented Naïve Bayes (TAN) classifier relaxes the sweeping independence assumptions of the Naïve Bayes approach by taking account of conditional probabilities. It does this in a limited sense, by incorporating the conditional probability of each attribute given the class and (at most) one other attribute. The method of boosting has previously proven very effective in improving the per...

متن کامل

Image Classification Using Naïve Bayes Classifier

An image classification scheme using Naïve Bayes Classifier is proposed in this paper. The proposed Naive Bayes Classifier-based image classifier can be considered as the maximum a posteriori decision rule. The Naïve Bayes Classifier can produce very accurate classification results with a minimum training time when compared to conventional supervised or unsupervised learning algorithms. Compreh...

متن کامل

Incremental Discretization for Naïve-Bayes Classifier

Naïve-Bayes classifiers (NB) support incremental learning. However, the lack of effective incremental discretization methods has been hindering NB’s incremental learning in face of quantitative data. This problem is further compounded by the fact that quantitative data are everywhere, from temperature readings to share prices. In this paper, we present a novel incremental discretization method ...

متن کامل

Benchmarking the semi-supervised naïve Bayes classifier

Semi-supervised learning involves constructing predictive models with both labelled and unlabelled training data. The need for semi-supervised learning is driven by the fact that unlabelled data are often easy and cheap to obtain, whereas labelling data requires costly and time consuming human intervention and expertise. Semi-supervised methods commonly use self training, which involves using t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal nasional komputasi dan teknologi informasi

سال: 2022

ISSN: ['2620-8342', '2621-3052']

DOI: https://doi.org/10.32672/jnkti.v5i2.4191